3.1153 \(\int \frac {1}{x^{11} (a+b x^4)^{5/4}} \, dx\)

Optimal. Leaf size=128 \[ -\frac {77 b^{5/2} \sqrt [4]{\frac {b x^4}{a}+1} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{40 a^{7/2} \sqrt [4]{a+b x^4}}-\frac {77 b^2}{120 a^3 x^2 \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}} \]

[Out]

-1/10/a/x^10/(b*x^4+a)^(1/4)+11/60*b/a^2/x^6/(b*x^4+a)^(1/4)-77/120*b^2/a^3/x^2/(b*x^4+a)^(1/4)-77/40*b^(5/2)*
(1+b*x^4/a)^(1/4)*(cos(1/2*arctan(x^2*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arctan(x^2*b^(1/2)/a^(1/2)))*Elliptic
E(sin(1/2*arctan(x^2*b^(1/2)/a^(1/2))),2^(1/2))/a^(7/2)/(b*x^4+a)^(1/4)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {275, 286, 197, 196} \[ -\frac {77 b^2}{120 a^3 x^2 \sqrt [4]{a+b x^4}}-\frac {77 b^{5/2} \sqrt [4]{\frac {b x^4}{a}+1} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{40 a^{7/2} \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^11*(a + b*x^4)^(5/4)),x]

[Out]

-1/(10*a*x^10*(a + b*x^4)^(1/4)) + (11*b)/(60*a^2*x^6*(a + b*x^4)^(1/4)) - (77*b^2)/(120*a^3*x^2*(a + b*x^4)^(
1/4)) - (77*b^(5/2)*(1 + (b*x^4)/a)^(1/4)*EllipticE[ArcTan[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(40*a^(7/2)*(a + b*x^
4)^(1/4))

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 197

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Dist[(1 + (b*x^2)/a)^(1/4)/(a*(a + b*x^2)^(1/4)), Int[1/(1 + (b
*x^2)/a)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a] && PosQ[b/a]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 286

Int[((c_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Simp[(c*x)^(m + 1)/(a*c*(m + 1)*(a + b*x^2)^(1
/4)), x] - Dist[(b*(2*m + 1))/(2*a*c^2*(m + 1)), Int[(c*x)^(m + 2)/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b, c
}, x] && PosQ[b/a] && IntegerQ[2*m] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^{11} \left (a+b x^4\right )^{5/4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x^6 \left (a+b x^2\right )^{5/4}} \, dx,x,x^2\right )\\ &=-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}}-\frac {(11 b) \operatorname {Subst}\left (\int \frac {1}{x^4 \left (a+b x^2\right )^{5/4}} \, dx,x,x^2\right )}{20 a}\\ &=-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}+\frac {\left (77 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (a+b x^2\right )^{5/4}} \, dx,x,x^2\right )}{120 a^2}\\ &=-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}-\frac {77 b^2}{120 a^3 x^2 \sqrt [4]{a+b x^4}}-\frac {\left (77 b^3\right ) \operatorname {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^{5/4}} \, dx,x,x^2\right )}{80 a^3}\\ &=-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}-\frac {77 b^2}{120 a^3 x^2 \sqrt [4]{a+b x^4}}-\frac {\left (77 b^3 \sqrt [4]{1+\frac {b x^4}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{5/4}} \, dx,x,x^2\right )}{80 a^4 \sqrt [4]{a+b x^4}}\\ &=-\frac {1}{10 a x^{10} \sqrt [4]{a+b x^4}}+\frac {11 b}{60 a^2 x^6 \sqrt [4]{a+b x^4}}-\frac {77 b^2}{120 a^3 x^2 \sqrt [4]{a+b x^4}}-\frac {77 b^{5/2} \sqrt [4]{1+\frac {b x^4}{a}} E\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{40 a^{7/2} \sqrt [4]{a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 54, normalized size = 0.42 \[ -\frac {\sqrt [4]{\frac {b x^4}{a}+1} \, _2F_1\left (-\frac {5}{2},\frac {5}{4};-\frac {3}{2};-\frac {b x^4}{a}\right )}{10 a x^{10} \sqrt [4]{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^11*(a + b*x^4)^(5/4)),x]

[Out]

-1/10*((1 + (b*x^4)/a)^(1/4)*Hypergeometric2F1[-5/2, 5/4, -3/2, -((b*x^4)/a)])/(a*x^10*(a + b*x^4)^(1/4))

________________________________________________________________________________________

fricas [F]  time = 1.01, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x^{4} + a\right )}^{\frac {3}{4}}}{b^{2} x^{19} + 2 \, a b x^{15} + a^{2} x^{11}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^11/(b*x^4+a)^(5/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(3/4)/(b^2*x^19 + 2*a*b*x^15 + a^2*x^11), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {5}{4}} x^{11}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^11/(b*x^4+a)^(5/4),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(5/4)*x^11), x)

________________________________________________________________________________________

maple [F]  time = 0.16, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \,x^{4}+a \right )^{\frac {5}{4}} x^{11}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^11/(b*x^4+a)^(5/4),x)

[Out]

int(1/x^11/(b*x^4+a)^(5/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {5}{4}} x^{11}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^11/(b*x^4+a)^(5/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(5/4)*x^11), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^{11}\,{\left (b\,x^4+a\right )}^{5/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^11*(a + b*x^4)^(5/4)),x)

[Out]

int(1/(x^11*(a + b*x^4)^(5/4)), x)

________________________________________________________________________________________

sympy [C]  time = 3.15, size = 32, normalized size = 0.25 \[ - \frac {{{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{2}, \frac {5}{4} \\ - \frac {3}{2} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{10 a^{\frac {5}{4}} x^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**11/(b*x**4+a)**(5/4),x)

[Out]

-hyper((-5/2, 5/4), (-3/2,), b*x**4*exp_polar(I*pi)/a)/(10*a**(5/4)*x**10)

________________________________________________________________________________________